

Tetrahedron 57 (2001) 2371–2378

New reactivity of functionalised organolithium compounds in the presence of Cu(I) or Cu(II) salts: conjugate addition, acylation or dimerisation

Isidro M. Pastor and Miguel Yus*

Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain

Received 28 October 2000; revised 18 December 2000; accepted 19 January 2001

Abstract—The reaction of functionalised organolithium compounds 1 with electrophilic olefins 2 in the presence of copper(I) iodide and HMPA in THF at -78° C leads, after hydrolysis with a saturated solution of ammonium chloride, to the corresponding products 3 resulting from a conjugate addition. The same process but using an acyl chloride instead of the electrophilic olefins affords the expected ketone 4 from an acylation process. Finally, when intermediates 1 are treated with copper(II) chloride in THF at -78° C, the corresponding dimers 5 are isolated after the same hydrolytic treatment. © 2001 Elsevier Science Ltd. All rights reserved.

1. Introduction

In the last decade, we have been using functionalised organolithium compounds¹ in synthetic organic chemistry. These intermediates (which are generally prepared at low temperature by chlorine² or sulphur–lithium exchange,³ as well as by ring opening of heterocycles,⁴ using an arenecatalysed lithiation^{5,6}) react with electrophiles, as usually, being able to generate directly polyfunctionalised molecules. For instance, with α,β -unsaturated carbonyl compound they react at the carbonyl group giving functionalised alcohols⁷ and the acylation is problematic because in the reaction with an acyl chloride or an anhydride it is difficult to stop the process to give a ketone.⁷ Another interesting process is the dimerisation of organolithium derivatives which is not easy to be carried out by standard methodologies.⁷ With these arguments in hand, it would be desirable to change the reactivity of functionalised organolithium compounds by transforming these reagents into

other organometallic derivatives by reaction with the corresponding metallic salts. From the many different possibilities, we think that copper is an interesting metal due to the special reactivity of its organometallic derivatives, mainly taking part in the above-mentioned processes: conjugate addition, acylation and dimerisation reactions.⁸ In this paper, we describe the reaction of functionalised organolithium reagents with copper(I) or (II) salts addressed to these mentioned processes.⁹

2. Results and discussion

2.1. Conjugate addition reactions

In order to optimise the reaction conditions (Scheme 1) we used the organolithium intermediate 1a (Chart 1, easily prepared by reductive ring opening of phthalan with lithium and a catalytic amount of 4,4'-di-*tert*-butylbiphenyl

Scheme 1. Preparation of compounds 3–5. Reagents and conditions: (i) CuX, R¹CH=R²Z (2); (ii) NH₄Cl; (iii) CuX, RCOCl; (iv) CuCl₂.

Keywords: copper reagents; conjugate addition; acylation; dimerisation; functionalised organolithiums.

^{*} Corresponding author. Tel.: +34-965903548; fax: +34-965903549; e-mail: yus@ua.es

Chart 1. Functionalised organolithium compounds 1 used.

Chart 2. Electrophilic olefins 2 used.

Table 1. Preparation of compounds 3

(DTBB) at 0°C following the literature procedure¹⁰) and 2-cyclohexenone (2b, Chart 2) as electrophilic reagent. After filtering the excess of lithium, the resulting solution containing the intermediate 1a was treated with copper(I) iodide or the copper(I) bromide-dimethyl sulfide complex (1 or 2 equiv.) using or not an additive such as hexamethylphosphoramide (HMPA), N,N'-dimethylpropyleneurea (DMPU) and dimethyl sulfide (6 equiv.) (Table 1, entries 2-8). We found that the best conditions are the use of 2 equiv. of copper(I) iodide and HMPA as the additive (Table 1, entry 7), the other conditions giving lower yields of compound 3ab (Chart 3). The reaction of intermediate 1a was also studied with the other electrophilic olefins included in Chart 2, that is, 2-cyclopentenone (2a), methyl vinyl ketone (2c), *trans*-benzyledenacetone (2d), chalcone (2e), ethyl acrylate (2f), methyl methacrylate (2g) and cumarine (2h) (Table 1, entries 1 and 9–18): results (compounds 3aa and 3ac-ah) are comparable to the case of 3ab except for compounds 3af and 3ag, in which the yields were very low (Table 1, entries 14 and 16) and could be improved using

Entry	Organolithium intermediate	Copper(I) salt (equiv.)	Additive ^a	Electrophilic olefin	Product 3 ^b	
					No.	Yield (%) ^c
1	1a	CuI (2)	HMPA	2a	3aa	70
2	1a	$CuBr \cdot SMe_2(1)$	-	2b	3ab	37
3		$CuBr \cdot SMe_2(2)$	-			61
4		$CuBr \cdot SMe_2(2)$	HMPA			56
5		$CuBr \cdot SMe_2(2)$	SMe_2			48
6		CuI (2)	_			35
7		CuI (2)	HMPA			74
8		CuI (2)	DMPU			60
9	1a	CuI (2)	HMPA	2c	3ac	51
10	1a	$CuBr \cdot SMe_2(2)$	-	2d	3ad	50
11		$CuBr \cdot SMe_2(2)$	HMPA			64
12		CuI (2)	SMe_2			49
13	1a	CuI (2)	HMPA	2e	3ae	62
14	1a	CuI (2)	HMPA	2f	3af	12
15		$CuBr \cdot SMe_2(2)$	LiBr ^d			38
16	1a	CuI (2)	HMPA	2g	3ag	10
17		$CuBr \cdot SMe_2(2)$	LiBr ^d	-	-	32
18	1a	CuI (2)	HMPA	2h	3ah	79
19	1b	CuI (2)	HMPA	2a	3ba	71
20	1b	CuI (2)	HMPA	2b	3bb	69
21	1b	CuI (2)	HMPA	2c	3bc	45
22	1b	CuI (2)	HMPA	2d	3bd	58
23	1b	CuI (2)	HMPA	2e	3be	57
24	1b	$CuBr \cdot SMe_2(2)$	LiBr ^d	2f	3bf	33
25	1b	$CuBr \cdot SMe_2(2)$	LiBr ^d	2g	3bg	32
26	1b	CuI (2)	HMPA	2 h	3bh	76
27	1c	CuI (2)	HMPA	2b	3cb	31
28	1d	CuI (2)	HMPA	2b	3db	40

^a Five equiv. of the corresponding additive were added unless otherwise noted.

^b All compounds **3** were \ge 95% pure (GLC and/or 300 MHz ¹H NMR).

^c Isolated yield after column chromatography (silica gel, hexane/ethyl acetate) based on the heterocyclic (for **1a**-c) or the chlorinated starting material (for **1d**), precursor of the organolithium intermediates **1**.

^d Two equivalents were used.

Chart 3. Products 3–5 prepared.

lithium bromide (2 equiv.) as the corresponding additive instead of HMPA (Table 1, entries 15 and 17, and footnote d).¹¹

When intermediates **1b** (prepared by reductive ring opening of isochroman¹²), **1c** (resulting from reductive opening of 2,3-dihydrobenzofuran¹³) or **1d** (obtained by chlorine–lithium exchange from the corresponding chloro acetal¹⁴) were used, similar results were obtained, compounds **3ba–3db** being isolated (Table 1, entries 19–28). Also here, for the reaction of compounds **1b+2f** and **1b+2g** it was necessary to use lithium bromide as the additive in order to obtain anyhow moderate yields (Table 1, entries 24 and 25, and footnote d).¹¹

2.2. Acylation reactions

As it was mentioned above, the acylation of organocopper reagents is an efficient way to generate ketones from carboxylic acid derivatives.¹⁵ As functionalised organolithium reagents, intermediates $1a^{10}$ and $1b^{12}$ were used, acting pivaloyl or benzoyl chlorides as acylating agents (Scheme 1). After testing different reaction conditions for compound 1b and pivaloyl chloride (Table 2, entries 3–5, and footnote d), we found that the use of 2 equiv. of copper(I) iodide and HMPA as additive gave the best results (Table 2, entry 3). No improvement was achieved using lithium bromide as additive (Table 2, entries 4 and 5). Applying the best conditions for the two intermediates 1a

Entry	Organolithium intermediate	Copper(I) salt (equiv.)	Additive ^a	Acyl chloride RCOCl	Product 4 ^b	
					No.	Yield (%) ^c
1	1a	CuI (2)	HMPA	Bu ^t COCl	4aa	60
2	1a	CuI (2)	HMPA	PhCOCl	4ab	45
3	1b	CuI (2)	HMPA	Bu ^t COC1	4ba	65
4		$CuBr \cdot SMe_2(1)$	LiBr			35
5		$CuBr \cdot SMe_2(2)$	LiBr			$50(13)^{d}$
6	1b	CuI (2)	HMPA	PhCOCl	4bb	42

Table 2. Preparation of compounds 4

^a Five equivalents was used for HMPA and two for LiBr.

^b All compounds 4 were >95% pure (GLC and/or 300 MHz ¹H NMR).

^c Isolated yield after column chromatography (silica gel, hexane/ethyl acetate) based on the heterocyclic precursor of the organolithium intermediate 1.

^d Yield corresponding to the reaction using 1.1 equiv. of pivaloyl chloride.

Table 3. Preparation of compounds 5

Entry	Organolithium intermediate	CuCl ₂ (equiv.)	Product 5 ^a	
			No.	Yield (%) ^b
1	1a	1	5a	63
2		1.5		37
3		1 ^c		20
4	1b	1	5b	59
5	1c	1	5c	53
6	1d	1	5d	72
7	1e	1	5e	33

^a All compounds 5 were ≥94% pure (GLC and/or 300 MHz ¹H NMR).
 ^b Isolated yield after column chromatography (silica gel, hexane/ethyl acetate) based on the starting precursor of the organolithium intermediate 1 and corresponding to the reaction 1→1/2 5.

^c DMF was used as cosolvent (see text).

and **1b** and the two mentioned acyl chlorides, the expected compounds **4** were isolated (Table 2, entries 1-3 and 6).

2.3. Dimerisation reactions

Finally, we studied the dimerisation of intermediates $1a-d^{10,12-14}$ and 1e (prepared from the corresponding chloro alcohol by reaction with (1) *n*-butyllithium in THF at -78° C, and (2) lithium naphtalenide at the same temperature¹⁶) by means of an equimolecular amount of copper(II) chloride in THF at -78° C, so the expected dimers **5** were isolated (Scheme 1, Charts 1 and 3, and Table 3). As it can be seen, either the use of more amount of the copper(II) salt (Table 3, entry 2) or with DMF as cosolvent¹⁷ (Table 3, entry 3 and footnote c) did not improve the obtained yields.

From a mechanistic point of view, organocopper(I) or (II) intermediates of type $R^{FG}Cu$ or $(R^{FG})_2Cu$ could be involved in the sections 1/2 (conjugate addition/acylation reactions) or 3 (dimerisation reactions), respectively. However, radical-type reactions, especially in the case of dimerisation processes, cannot be ruled out.

3. Conclusion

In conclusion, we have described here an interesting in situ transformation of functionalised organolithium compounds into the corresponding copper reagents, which are able to give new processes, such as (1) conjugate additions to electrophilic olefins, (2) acylation reactions with acyl chlorides, and (3) dimerisation processes. All of these reactions, which are not possible without the help of copper(I) or (II) salts, yielded polyfunctionalised compounds in only one reaction step.

4. Experimental

4.1. General

For general information see Ref. 18.

4.2. Conjugate addition of organolithium intermediates 1 to electrophilic olefins 2 in the presence of a copper(I) salt

4.2.1. Isolation of compounds 3. General procedure. Once the corresponding functionalised organolithium intermediate 1 was generated according to the described procedure $(\mathbf{1a}, {}^{10} \mathbf{1b}, {}^{12} \mathbf{1c}^{13} \text{ or } \mathbf{1d}^{14})$, its clear THF solution¹⁹ (2 mmol scale) was dropwise added to a mixture of copper iodide (0.78 g, 4 mmol) and the corresponding electrophilic olefin (2, 2.2 mmol) in THF (10 ml) and HMPA (1.8 ml, 10 mmol) at -78° C. The resulting mixture was stirred for ca. 30 min at the same temperature, being then hydrolysed with a saturated solution of NH₄Cl (10 ml) at -78° C to room temperature. The mixture was then extracted with Et₂O (5 \times 10 ml) and the organic phase washed with water (3×10 ml) and dried over anhydrous MgSO₄. After evaporation of the solvents (15 Torr), the resulting residue was purified by column chromatography (silica gel, hexane/ ethyl acetate) to give pure compounds 3. Yields and specific reactive conditions are given in Table 1. Physical, spectroscopic and analytical data follow.

4.2.2. 3-(**2**-Hydroxymethylbenzyl)cyclopentanone (3aa). $R_{\rm f}$ 0.31 (hexane/ethyl acetate: 1/1); ν (film) 3584–3115 (OH), 3062, 3019, 1454, 1401 (C=CH), 1736 (C=O), 1042, 1012 cm⁻¹ (C-O); $\delta_{\rm H}$ 1.57–1.71, 1.87–1.96, 2.05– 2.19, 2.26–2.36 (1H, 1H, 3H and 2H, respectively, 4m, 3×ring CH₂ and OH), 2.42–2.55 (1H, m, CH), 2.82 (2H, d, *J*=7.3 Hz, CCH₂CH), 4.69 (2H, s, CH₂OH), 7.16–7.38 (4H, m, ArH); $\delta_{\rm C}$ 29.6, 37.5, 38.3, 45.05 (3×ring CH₂ and CH₂CH), 38.2 (CH), 63.0 (CH₂OH), 126.6, 127.9, 128.6, 129.8, 138.3, 138.4 (ArC), 219.3 (CO); *m/z* 186 (M⁺–18, 10%), 143 (13), 129 (19), 128 (11), 115 (10), 105 (14), 104 (100), 91 (28), 83 (29), 77 (21), 55 (33), 41 (11); HRMS: $M^+-[H_2O]$, found 186.1045. $C_{13}H_{14}O$ requires 186.1045.

4.2.3. 3-(2-Hydroxymethylbenzyl)cyclohexanone (3ab). $R_{\rm f}$ 0.23 (hexane/ethyl acetate: 3/2); ν (film) 3618–3019 (OH), 1707 (C=O), 1449, 1421 (C=CH), 1040, 1014 cm⁻¹ (C-O); $\delta_{\rm H}$ 1.38–1.49, 1.54–1.69, 1.89–1.92, 1.99–2.15, 2.21–2.40 (1H, 1H, 2H, 3H and 3H, respectively, 5m, 4×ring CH₂, CH and OH), 2.64–2.78 (2H, m, CCH₂CH), 4.67 (2H, s, CH₂OH), 7.11–7.14, 7.19–7.26, 7.35–7.38 (1H, 2H and 1H, respectively, 3m, ArH); $\delta_{\rm C}$ 25.1, 31.2, 39.1, 41.4, 47.9 (4×ring CH₂ and CH₂CH), 40.5 (CH), 63.0 (CH₂OH), 126.6, 127.8, 128.6, 130.25, 137.6, 138.6 (ArC); *m*/*z* 200 (M⁺–18, 11%), 142 (10), 104 (100), 97 (49), 91 (22), 77 (17), 69 (31), 55 (36), 41 (67); HRMS: M⁺–[H₂O], found 200.1203. C₁₄H₁₆O requires 200.1211.

4.2.4. 5-(2-Hydroxymethylphenyl)-2-pentanone (3ac). $R_{\rm f}$ 0.26 (hexane/ethyl acetate: 3/2); ν (film) 3620–3119 (OH), 3061, 3017, 1453, 1416 (C=CH), 1707 (C=O), 1040, 1015 cm⁻¹ (C-O); $\delta_{\rm H}$ 1.84–1.94 (2H, m CH₂CH₂CH₂), 2.13 (3H, s, CH₃), 2.20 (1H, br s, OH), 2.52 (2H, t, *J*=7.3 Hz, CH₂CO), 2.65–2.70 (2H, m, CH₂Ar), 4.72 (2H, s, *CH*₂OH), 7.16–7.26, 7.34–7.37 (3H and 1H, respectively, 2m, ArH); $\delta_{\rm C}$ 25.0, 31.6, 43.0 ((CH₂)₃), 30.0 (CH₃), 63.2 (CH₂OH), 126.4, 128.0, 128.8, 129.5, 138.5, 140.0 (ArC), 209.15 (CO); *m*/*z* 174 (M⁺–18, 8%), 145 (10), 133 (20), 132 (11), 131 (88), 117 (16), 116 (14), 115 (15), 105 (26), 104 (15), 91 (44), 79 (11), 77 (26), 65 (10), 43 (100); HRMS: M⁺–[H₂O], found 174.1039. C₁₂H₁₄O requires 174.1045.

4.2.5. 5-(2-Hydroxymethylphenyl)-4-phenyl-2-pentanone (3ad). $R_{\rm f}$ 0.39 (hexane/ethyl acetate: 1/1); ν (film) 3589– 3187 (OH), 3061, 3027, 1494, 1453 (C=CH), 1738 (C=O), 1044, 1013 cm⁻¹ (C–O); $\delta_{\rm H}$ 2.00 (3H, s, CH₃), 2.45 (1H, br s, OH), 2.81–2.89, 2.96–3.03 (1H and 3H, respectively, 2m, CH₂CHCH₂), 3.47 (1H, q, J=7.3 Hz, CH), 4.57 (2H, d, J=5.5 Hz, CH_2OH), 6.91, 7.07–7.35 (1H and 8H, respectively, deformed d, J=9.2 Hz and m, ArH); $\delta_{\rm C}$ 30.4 (*C*H₂CHCH₂CO), 42.3 (CH), $(CH_{3}),$ 39.65 49.3 (CH₂CHCH₂CO), 62.8 (CH₂OH), 126.4, 126.5, 127.4, 127.5, 128.4, 128.9, 130.4, 132.4, 136.4, 137.75, 130.0, 143.7 (ArC), 208.2 (CO); m/z 250 (M⁺-18, 2%), 210 (11), 192 (28), 104 (35), 91 (23), 77 (16), 43 (100); HRMS: $M^+-[H_2O]$, found 250.1364. $C_{18}H_{18}O$ requires 250.1358.

4.2.6. 4-(2-Hydroxymethylphenyl)-1,3-diphenyl-1-butanone (**3ae**). R_f 0.43 (hexane/ethyl acetate: 3/2); ν (film) 3624–3209 (OH), 3061, 3027, 1494, 1449 (C==CH), 1682 (C==O), 1044 cm⁻¹ (C=O); δ_H 2.92 (1H, m, CHHCH), 3.16 (1H, dd, J=13.4, 6.1 Hz, CHHCH), 3.41 (2H, m, CH₂CO), 3.68 (1H, m, CH), 4.62 (2H, m, CH₂OH), 6.90, 7.04–7.56, 7.89 (1H, 11H and 2H, respectively, 3m, ArH); δ_C 39.6 (CH₂CH), 42.5 (CH), 44.5 (CH₂CO), 63.1 (CH₂OH), 125.7, 126.5, 126.6, 127.5, 127.7, 128.0, 128.4, 128.5 129.0 130.6, 133.1, 137.0, 138.0, 139.0 (18C, ArC), 199.3 (CO); m/z 312 (M⁺–18, 1.1%), 210 (27), 209 (10), 192 (16), 105 (100), 104 (16), 91 (20), 77 (57), 51 (11); HRMS: M⁺–[H₂O], found 312.1552. C₂₃H₂₀O requires 312.1514. **4.2.7. Ethyl 4-(2-hydroxymethylphenyl)butanoate (3af).** $R_{\rm f}$ 0.38 (hexane/ethyl acetate: 3/2); ν (film) 3613–3146 (OH), 3036, 3018, 1454 (C=CH), 1732 (C=O), 1184, 1036, 1022 cm⁻¹ (C-O); $\delta_{\rm H}$ 1.25 (3H, t, *J*=7.3 Hz, CH₃), 1.89–1.99 (2H, m, CH₂CH₂CH₂), 2.04 (1H, br s, OH), 2.38 (2H, t, *J*=7.0 Hz, CH₂CO), 2.70–2.76 (2H, m, ArCH₂), 4.12 (2H, q, *J*=7.3 Hz, CH₂CH₃), 4.72 (2H, s, CH₂OH), 7.18–7.28, 7.35–7.37 (3H and 1H, respectively, 2m, ArH); $\delta_{\rm C}$ 14.2 (CH₃), 26.3, 31.6, 33.8 ((CH₂)₃), 60.4, 63.2 (2×OCH₂), 126.4, 128.0, 128.7, 129.6, 138.5, 139.8 (ArC), 173.7 (CO₂); *m*/*z* 204 (M⁺–18, 29%), 147 (13), 132 (13), 131 (100), 129 (21), 117 (18), 116 (21), 115 (18), 91 (47), 79 (11), 77 (28), 65 (17), 60 (15); HRMS: M⁺–[H₂O], found 204.1145. C₁₃H₁₆O₂ requires 204.1150.

Methyl 4-(2-hydroxymethylphenyl)-2-methyl-4.2.8. **butanoate** (3ag). R_f 0.35 (hexane/ethyl acetate: 3/2); ν (film) 3653-3115 (OH), 3063, 3020, 1454, 1434 (C=CH), 1731 (C=O), 1160, 1126, 1041, 1020 cm⁻¹ (C–O); $\delta_{\rm H}$ 1.22 (3H, d, J=7.3 Hz, CHCH₃), 1.61–1.78 (3H, m, CH₂CH₂CH and OH), 2.51–2.58 (1H, m, CH), 2.69 (2H, t, J=8.3 Hz, CH₂CH₂CH), 3.67 (3H, s, OCH₃), 4.71 (2H, s, CH₂OH), 7.17-7.25, 7.36 (3H and 1H, respectively, 2m, ArH); δ_{C} 17.4 (CHCH₃), 30.1, 35.2 ((CH₂)₂), 39.3 (CH), 51.7 (OCH₃), 126.4, 128.0, 128.7, 129.5, 138.5, 139.8 (ArC), 177.2 (CO₂); m/z 204 (M⁺-18, 27%), 172 (17), 146 (12), 145 (100), 129 (12), 117 (28), 115 (15), 105 (23), 104 (10), 91 (44), 88 (32), 77 (30), 65 (13), 59 (11), 57 (22), 51 (10), 41 (13); HRMS: M⁺-[H₂O], found 204.1104. C₁₃H₁₆O₂ requires 204.1150.

4.2.9. 4-(2-Hydroxymethylbenzyl)-2-chromanone (3ah). $R_{\rm f}$ 0.27 (hexane/ethyl acetate: 3/2); ν (film) 3613–3224 (OH), 3063, 3020, 1487, 1455 (C=CH), 1774 (C=O), 1148, 1039, 1012 cm⁻¹ (C-O); $\delta_{\rm H}$ 1.84 (1H, br s, OH), 2.75–2.87 (3H, m, CH₂CHCHHCO₂), 3.05 (1H, dd, J=13.7, 7.0 Hz, CHCHHCO₂) 3.37 (1H, m, CH), 4.56 (2H, m, CH₂OH), 6.93, 6.97–7.11, 7.26, 7.35 (1H, 3H, 3H, and 1H, respectively, 4m, ArH); $\delta_{\rm C}$ 34.0, 37.5 (CH₂CHCH₂), 36.95 (CH), 63.0 (CH₂OH), 117.1, 124.3, 127.2, 128.0, 128.1, 128.5, 129.1, 130.7, 136.4, 138.8, 151.3 (12C, ArC), 168.3 (CO₂); *m*/*z* 268 (M⁺, 2%), 251 (11), 250 (65), 208 (19), 148 (13), 147 (100), 121 (15), 104 (56), 103 (57), 93 (28), 91 (52), 89 (10), 77 (26), 65 (15).

4.2.10. 3-[2-(2-Hydroxyethyl)benzyl]cyclopentanone (3ba). $R_{\rm f}$ 0.30 (hexane/ethyl acetate: 1/1); ν (film) 3626–3122 (OH), 3050, 3014, 1448, 1401 (C=CH), 1730 (C=O), 1038 cm⁻¹ (C-O); $\delta_{\rm H}$ 1.66, 1.93, 2.14, 2.32, 2.47 (1H, 1H, 2H, 2H and 1H, respectively, 5m, 3×ring CH₂ and CH), 1.88 (1H, br s, OH), 2.80 (2H, d, *J*=6.7 Hz, ArCH₂CH), 2.91 (2H, t, *J*=7.0 Hz, CH₂CH₂OH), 3.84 (2H, t, *J*=7.0 Hz, CH₂OH), 7.19 (4H, m, ArH); $\delta_{\rm C}$ 28.8, 35.4, 37.6, 37.8, 44.6 (3×ring CH₂ and 2×CH₂Ar), 37.8 (CH), 62.7 (CH₂OH), 125.9, 126.0, 129.4, 129.5, 136.1, 138.0 (ArC), 218.8 (CO); *m*/*z* 200 (M⁺-18, 0.6%), 143 (10), 117 (27), 115 (17), 113 (12), 106 (67), 105 (36), 91 (22), 83 (100), 77 (12), 55 (31), 44 (19), 41 (13), 40 (12); HRMS: M⁺-[H₂O], found 200.1203. C₁₄H₁₆O requires 200.1211.

4.2.11. 3-[2-(2-Hydroxyethyl)benzyl]cyclohexanone (3bb).

 $R_{\rm f}$ 0.22 (hexane/ethyl acetate: 3/2); ν (film) 3617–3107

(OH), 3059, 3016, 1447, 1417 (C=CH), 1705 (C=O), 1044 cm⁻¹ (C–O); $\delta_{\rm H}$ 1.40–1.49, 1.53–1.74, 1.88–1.92, 2.00–2.15, 2.22–2.42 (1H, 3H, 1H, 2H and 3H, respectively, 5m, 4×ring CH₂, CH and OH), 2.61–2.75 (2H, m, CCH₂CH), 2.88 (2H, t, *J*=7.0 Hz, CH₂CH₂OH), 3.84 (2H, m, CH₂OH), 7.08–7.20 (4H, m, ArH); $\delta_{\rm C}$ 25.2, 31.2, 35.65, 41.4, 48.0 (6C, 4×ring CH₂, CH₂CH and CH₂CH₂OH), 40.5 (CH), 63.4 (CH₂OH), 126.5, 126.6, 129.9, 130.4, 136.3, 138.0 (ArC), 211.5 (CO); *m/z* 214 (M⁺–18, 3%), 156 (18), 117 (18), 115 (13), 106 (30), 105 (23), 104 (11), 97 (100), 91 (15), 77 (10), 69 (34), 55 (41), 41 (64), 40 (17); HRMS: M⁺–[H₂O], found 214.1340. C₁₅H₁₈O requires 214.1358.

4.2.12. 5-[2-(2-Hydroxyethyl)phenyl]-2-pentanone (3bc). $R_{\rm f}$ 0.31 (hexane/ethyl acetate: 1/1); ν (film) 3624–3120 (OH), 3015, 1460, 1449 (C=CH), 1710 (C=O), 1110, 1045 cm⁻¹ (C-O); $\delta_{\rm H}$ 1.75 (1H, br s, OH), 1.87 (2H, m, CH₂CH₂CH₂), 2.14 (3H, s, CH₃), 2.51 (2H, deformed t, J=7.0 Hz, CH₂CO), 2.64 (2H, t, J=7.9 Hz, CH₂Ar), 2.93 (2H, deformed t, J=7.0 Hz, CH₂Ar), 3.85 (2H, deformed t, J=7.0 Hz, CH₂CH), 7.17 (4H, m, ArH); $\delta_{\rm C}$ 25.0, 32.0, 35.7, 43.0, (2×CH₂ and 2×CH₂Ar), 30.0 (CH₃), 63.4 (CH₂OH), 126.3, 126.6, 129.5, 129.9, 136.1, 140.1 (ArC), 208.7 (CO); m/z 188 (M⁺-18, 4%), 130 (16), 119 (50), 118 (31), 117 (24), 115 (13), 106 (11), 91 (15), 43 (100); HRMS: M⁺-[H₂O], found 188.1201. C₁₃H₁₆O requires 188.1201.

4.2.13. 5-[2-(2-Hydroxyethyl)phenyl]-4-phenyl-2-pentanone (3bd). R_f 0.28 (hexane/ethyl acetate: 3/2); ν (film) 3604–3125 (OH), 3060, 3026, 1493, 1452 (C=CH), 1710 (C=O), 1023 cm⁻¹ (C-O); δ_H 2.03 (3H, s, CH₃), 2.85, 2.99 (6H and 1H, respectively, 2m, CH₂CHCH₂ and CH₂CH₂OH), 3.45 (1H, q, *J*=7.3 Hz, CH), 3.80 (2H, t, *J*=7.0 Hz, CH₂OH), 6.91, 7.01–7.28 (1H and 8H, respectively, 2m, ArH); δ_C 30.6 (CH₃), 35.6, 40.1, 49.2, 63.5 (4×CH₂), 42.3 (CH), 126.2, 126.5, 126.6, 127.5, 128.4, 129.8, 130.6, 136.7, 138.1, 143.8 (12C, ArC), 207.9 (CO); *m*/*z* 225 (M⁺-57, 6%), 224 (38), 206 (11), 117 (13), 105 (14), 104 (14), 91 (16), 43 (100); HRMS: M⁺-[H₂O]–[CH₃]–[CO], found 221.1312. C₁₇H₁₇ requires 221.1330.

4.2.14. 4-[2-(2-Hydroxyethyl)phenyl]-1,3-diphenyl-1-butanone (**3be**). R_f 0.26 (hexane/ethyl acetate: 1/1); ν (film) 3689–3144 (OH), 3059, 3025, 1492, 1448 (C=CH), 1685 (C=O), 1046 cm⁻¹ (C–O); δ_H 2.54 (1H, br s, OH), 2.87 (3H, m, CH₂CH₂CH and CHHCH), 3.08 (1H, dd, *J*=13.4, 6.7 Hz, CHHCH), 3.34 (2H, m, CH₂CO), 3.62 (1H, m, CH), 3.73 (2H, t, *J*=7.3 Hz, CH₂OH), 6.91–7.49, 7.81 (13H and 1H, respectively, 2m, ArH); δ_C 35.5, 39.8, 44.1 (3×CH₂), 42.4 (CH), 63.2 (CH₂OH), 126.0, 126.2, 126.3, 126.4, 126.6, 127.5, 127.8, 128.0, 128.2, 128.3, 128.4, 129.6, 130.4, 136.7, 136.8, 138.0, 143.8 (18C, ArC), 199.1 (CO); *m*/*z* 326 (M⁺-18, 16%), 207 (12), 206 (17), 193 (10), 118 (92), 117 (100), 115 (24), 105 (12), 103 (11), 91 (24), 77 (20), 44 (14); HRMS: M⁺-[H₂O], found 326.1653. C₂₄H₂₂O requires 326.1671.

4.2.15. Ethyl **4-[2-(2-hydroxyethyl)phenyl]butanoate** (**3bf).** $R_{\rm f}$ 0.31 (hexane/ethyl acetate: 1/1); ν (film) 3684–3134 (OH), 3053(C=CH), 1728 (C=O), 1042 cm⁻¹ (C-O); $\delta_{\rm H}$ 1.19 (3H, t, *J*=7.3 Hz, CH₃), 1.60 (1H, br s, OH), 1.85 (2H, m, CH₂CH₂CH₂), 2.31 (2H, t, *J*=7.3 Hz, CH₂CO),

2.62 (2H, m, ArCH₂CH₂CH₂), 2.85 (2H, t, J=6.7 Hz, CH₂CH₂OH), 3.78 (2H, t, J=7.0 Hz, CH₂OH), 4.06 (2H, m, CH₂CH₃), 7.10 (4H, m, ArH); $\delta_{\rm C}$ 14.1 (CH₃), 26.2, 31.9, 33.8, 35.6 (2×CH₂, 2×ArCH₂), 60.3 (CH₂CH₃), 63.3 (CH₂OH), 126.2, 126.5, 129.4, 129.8, 136.1, 139.8 (ArC), 173.4 (CO₂); *m*/z 218 (M⁺-18, 12%), 206 (42), 173 (36), 160 (46), 145 (18), 131 (53), 130 (40), 129 (24), 128 (13), 119 (47), 118 (100), 117 (55), 116 (16), 115 (35), 106 (36), 105 (41), 104 (29), 103 (18), 101 (17), 91 (57), 88 (69), 79 (12), 78 (19), 77 (26), 73 (13), 70 (42), 65 (21), 61 (41), 60 (41), 55 (23), 51 (13), 45 (22), 43 (22), 41 (25); HRMS: M⁺-[H₂O], found 218.1317. C₁₄H₁₈O₂ requires 218.1307.

4.2.16. Methyl 4-[2-(2-hydroxyethyl)phenyl]-2-methylbutanoate (3bg). $R_{\rm f}$ 0.22 (hexane/ethyl acetate: 3/2); ν (film) 3696–3118 (OH), 1736 (C=O), 1461,1436 (C=CH), 1044 cm⁻¹ (C–O); $\delta_{\rm H}$ 1.22 (3H, d, *J*=7.3 Hz, CH₃CH), 1.67 (3H, m, CH₂CH and OH), 1.89–2.02 (1H, m, CH), 2.64 (2H, m, CH₂CH), 2.90 (2H, t, *J*=6.7 Hz, CH₂CH₂OH), 3.69 (3H, s, OCH₃), 3.84 (2H, t, *J*=6.7 Hz, CH₂OH), 7.16 (4H, m, ArH); $\delta_{\rm C}$ 17.3 (CHCH₃), 30.5, 35.2, 35.7 (3×CH₂), 39.4 (CH), 51.6 (CH₃O), 63.4 (CH₂OH), 126.3, 126.7, 129.9, 136.0, 140.2 (6C, ArC), 177.0 (CO₂); *m*/*z* 218 (M⁺-18, 4%), 131 (14), 119 (16), 117 (14), 115 (11), 105 (20), 104 (10), 91 (17), 88 (100), 57 (17); HRMS: M⁺-[H₂O], found 218.1308. C₁₄H₁₈O₂ requires 218.1307.

4.2.17. 4-[2-(2-Hydroxyethyl)benzyl]-2-chromanone (3bh). $R_{\rm f}$ 0.28 (hexane/ethyl acetate: 3/2); ν (film) 3613–3220 (OH), 3060, 3021, 1485, 1457 (C=CH), 1773 (C=O), 1040, 1010 cm⁻¹ (C–O); $\delta_{\rm H}$ 1.86 (1H, br s, OH), 2.71– 2.84 (5H, m, CH₂CH₂OH and CH₂CHCHHCO₂), 3.01 (1H, dd, J=13.7, 7.0 Hz, CHHCO₂), 3.26 (1H, m, CH), 3.77 (2H, t, J=6.7 Hz, CH₂OH), 6.91, 7.00–7.09, 7.14– 7.30 (1H, 3H and 4H, respectively, 3m, ArH); $\delta_{\rm C}$ 33.9, 35.2, 37.7 (3×CH₂), 36.9 (CH), 63.1 (CH₂OH), 117.0, 124.3, 125.8, 126.7, 127.1, 127.8, 128.5, 129.9, 130.6, 136.4, 136.7, 151.2 (ArC), 168.2 (CO₂); *m/z* 254 (M⁺ – 28, 6%), 252 (32), 207 (11), 148 (25), 147 (70), 135 (19), 118 (15), 117 (29), 115 (14), 107 (17), 105 (58), 104 (25), 103 (36), 93 (15), 91 (43), 79 (12), 77 (29), 65 (19), 51 (16), 45 (14), 44 (100), 43 (15), 40 (81).

4.2.18. 3-(2-Hydroxyphenetyl)cyclohexanone (3cb). $R_{\rm f}$ 0.34 (hexane/ethyl acetate: 7/3); ν (film) 3571–3097 (OH), 3063, 3028, 1454, 1349 (C=CH), 1692 (C=O), 1237 cm⁻¹ (C-O); $\delta_{\rm H}$ 1.56–1.75, 1.76–1.88, 1.94–2.12, 2.22–2.41 (3H, 2H, 4H and 2H, respectively, 4m, 4×ring CH₂ and CH₂CH), 2.64 (2H, t, *J*=7.9 Hz, ArCH₂), 4.90 (1H, br s, OH), 6.73, 6.86, 7.07 (1H, 1H and 2H, respectively, d, *J*=7.9 Hz, 2m, ArH); $\delta_{\rm C}$ 25.1, 27.1, 31.2, 36.6, 41.5, 48.0 (6×CH₂), 38.7 (CH), 115.2, 120.8, 127.2, 128.6, 130.1, 153.4 (ArC), 212.2 (CO); *m/z* 218 (M⁺, 9%), 107 (34), 97 (100), 79 (12), 77 (21), 55 (16), 41 (26); HRMS: M⁺-[H₂O], found 218.1297. C₁₄H₁₈O₂ requires 218.1307.

4.2.19. 3-(**3,3-Diethoxypropyl)cyclohexanone** (**3db**).²⁰ $R_{\rm f}$ 0.32 (hexane/ethyl acetate: 7/3); ν (film) 1707 (C=O), 1044 cm⁻¹ (C-O); $\delta_{\rm H}$ 1.20 (6H, t, *J*=7.0 Hz, 2×CH₃), 1.24, 1.35–1.45, 1.60–1.68 (4H, 3H and 3H, respectively, 3m, 3×ring CH₂ and CH₂CH₂), 2.02 (1H, m, ring CH), 2.35, 2.45 (1H and 1H, respectively, 2m, CHCH₂CO), 3.49, 3.63 (2H and 2H, respectively, 2m, 2×CH₂CH₃), 4.48 (1H, t,

J=5.5 Hz, CH); $\delta_{\rm C}$ 15.3 (2C, 2×CH₃), 21.9, 22.7, 24.3, 24.6, 38.0, 43.5 (4×ring CH₂ and CH₂CH₂), 33.4 (ring CH), 60.8 (2C, 2×CH₂CH₃), 102.8 (CH), 202.5 (CO); *m/z* 182 (M⁺ -46, 2%), 164 (13), 154 (11), 137 (13), 136 (11), 119 (33), 118 (16), 117 (21), 108 (11), 107 (20), 103 (68), 97 (56), 95 (17), 94 (16), 93 (32), 92 (28), 91 (70), 86 (82), 81 (17), 80 (19), 79 (78), 78 (16), 77 (40), 75 (57), 67 (22), 65 (14), 58 (54), 57 (33), 55 (27), 53 (14), 47 (100), 46 (15), 45 (44), 44 (18), 43 (35).

4.3. Acylation of intermediates 1 with pivaloyl or benzoyl chloride in the presence of a copper(I) salt

4.3.1. Isolation of compounds 4. General procedure. Once intermediates 1a-b were generated according to the literature processes, $^{10-12}$ their clear solution 19 (2 mmol scale) was dropwise added to a mixture of copper(I) iodide (0.78 g, 4 mmol) and the corresponding acyl chloride (4.2 mmol) in THF (10 ml) and HMPA (1.8 ml, 10 mmol) at -78° C. After ca. 30 min stirring at the same temperature, the resulting mixture was hydrolysed with a saturated solution of $NH_4Cl (10 ml) at -78^{\circ}C$ to room temperature. The resulting mixture was then extracted with Et_2O (5×10 ml) and the organic layer washed with water $(3 \times 10 \text{ ml})$ and dried over anhydrous MgSO₄ and evaporated (15 Torr). The resulting residue was then purified by column chromatography (silica gel, hexane/ethyl acetate) to give the pure title compounds 4. Yields and some specific reaction conditions are included in Table 2. Physical, spectroscopic and analytical data follow:

4.3.2. 2-(3,3-Dimethyl-2-oxobutyl)benzyl pivalate (4aa). $R_{\rm f}$ 0.45 (hexane/ethyl acetate: 5/1); ν (film) 3066, 3033 (C=CH), 1737, 1711 (C=O), 1281, 1148 cm⁻¹ (C-O); $\delta_{\rm H}$ 1.20, 1.25 (9H and 9H, respectively, 2s, 2×C(CH₃)₃), 3.96 (2H, s, CH₂CO), 5.00 (2H, s, CO₂CH₂), 7.06, 7.25, 7.38 (1H, 2H and 1H, respectively, 3m, ArH); $\delta_{\rm C}$ 26.5, 27.2 (6C, 2×C(CH₃)₃), 38.8, 44.5 (2×C), 40.7 (CH₂CO), 64.2 (CO₂CH₂) 127.1, 128.2, 129.3, 130.7, 133.9, 135.2 (ArC), 178.2 (CO₂), 212.5 (CO); *m*/*z* 233 (M⁺-57, 1%), 105 (10), 104 (85), 57 (100), 41 (45); HRMS: M⁺, found 290.1880. C₁₈H₂₆O₃ requires 290.1882.

4.3.3. 2-(2-Oxo-2-phenylethyl)-1-phenylcarbonyloxymethylbenzene (4ab). R_f 0.30 (hexane/ethyl acetate: 5/1); ν (film) 3060, 3033, 1450 (C=CH), 1720, 1689 (C=O), 1270, 1244, 1110 cm⁻¹ (C-O); $\delta_{\rm H}$ 4.49 (2H, s, CH₂CO), 5.36 (2H, s, CO₂CH₂), 7.31–7.62, 7.97, 8.09 (10H, 2H, and 2H, respectively, 3m, ArH); $\delta_{\rm C}$ 42.6 (*C*H₂CO), 65.1 (CO₂CH₂), 125.0, 127.5, 128.3, 128.4, 128.6, 128.7, 129.6, 129.7, 133.0, 133.6, 134.1, 134.6 (18C, ArC), 166.3 (CO₂), 197.1 (CO); *m*/*z* 225 (M⁺-105, 2%), 209 (44), 181 (22), 105 (100), 104 (49), 78 (12), 77 (67), 51 (20), 44 (11); HRMS: M⁺, found 330.1243. C₂₂H₁₈O₃ requires 330.1256.

4.3.4. 2-(3,3-Dimethyl-2-oxobutyl)phenetyl pivalate (4ba). $R_{\rm f}$ 0.48 (hexane/ethyl acetate: 5/1); ν (film) 3063, 3020, 1480, 1463 (C=CH), 1726, 1712 (C=O), 1152 cm⁻¹ (C-O); $\delta_{\rm H}$ 1.17, 1.26 (9H and 9H, respectively, 2s, 2×C(CH₃)₃), 2.81 (2H, t, *J*=7.4 Hz, CO₂CH₂C*H*₂), 3.94 (2H, s, CH₂CO), 4.19 (2H, t, *J*=7.4 Hz, CO₂CH₂), 7.02, 7.15–7.23 (1H and 3H, respectively, 2m, ArH); $\delta_{\rm C}$ 26.6, 27.1 (6C, 2×C(CH₃)₃), 32.2 (ArCH₂CH₂), 38.6, 44.5 (2×C), 40.9 (CH₂CO), 64.2

(CH₂OCO), 126.7, 127.1, 129.8, 130.8, 133.8, 136.3 (ArC), 178.4 (CO₂), 212.8 (CO); m/z 203 (M⁺-101, 2%), 202 (10), 118 (18), 117 (11), 85 (14), 57 (100), 41 (25); HRMS: M⁺, found 304.2018. C₁₉H₂₈O₃ requires 304.2038.

4.3.5. 2-(2-Oxo-2-phenylethyl)-1-(2-phenylcarbonyloxy-ethyl)benzene (4bb). $R_{\rm f}$ 0.38 (hexane/ethyl acetate: 5/1); ν (film) 3056, 3030, 1450 (C=CH), 1719, 1688 (C=O), 1269, 1245, 1114 cm⁻¹ (C-O); $\delta_{\rm H}$ 3.08 (2H, t, *J*=7.4 Hz, CO₂CH₂CH₂), 4.42 (2H, s, CH₂CO), 4.51 (2H, t, *J*=7.4 Hz, CO₂CH₂), 7.34–7.66, 8.02 (12H and 2H, respectively, 2m, ArH); $\delta_{\rm C}$ 32.3 (CO₂CH₂CH₂), 42.8 (CH₂CO), 64.8 (CO₂CH₂), 125.0, 126.7, 127.8, 128.2, 128.3, 128.5, 128.7, 129.0, 129.5, 129.6, 129.9, 130.1, 132.8, 136.3 (18C, ArC), 166.5 (CO₂), 197.5 (CO); *m*/*z* 223 (M⁺-121, 2%), 222 (10), 105 (100), 77 (39), 51 (10); HRMS: M⁺, found 344.1410. C₂₃H₂₀O₃ requires 344.1412.

4.4. Dimerisation of intermediates 1 in the presence of copper(II) chloride

4.4.1. Isolation of compounds 5. General procedure. Once intermediates **1a**–**e** were generated according to the literature procedure, $^{10,12-14,16}$ their clear solution¹⁹ (2 mmol scale) was added to a mixture of copper(II) chloride (0.28 g, 2 mmol) in THF (10 ml) at -78° C. After stirring for 45 min at the same temperature the reaction mixture was hydrolysed with a saturated solution of NH₄Cl (10 ml) and extracted with Et₂O (5×10 ml). The organic layer was washed with water (10 ml), dried over anhydrous MgSO₄ and evaporated (15 Torr). The obtained residue was then purified by column chromatography (silica gel, hexane/ ethyl acetate) to give the pure title compounds **5**. Yields are included in Table 3. Physical, spectroscopic and analytical data are as follows.

4.4.2. 2-(2-Hydroxymethylphenethyl)phenylmethanol (5a). $R_{\rm f}$ 0.25 (hexane/ethyl acetate: 3/2); mp 154–155°C (ethyl acetate); ν (KBr) 3507–3100 (OH), 1492, 1453, 1433 (C=CH), 1007 cm⁻¹ (C–O); $\delta_{\rm H}$ 2.97 (4H, s, 2×ArCH₂), 4.47 (2H, s, 2×OH), 4.62 (4H, s, 2×CH₂OH), 7.17–7.23, 7.35–7.38 (6H and 2H, respectively, 2m, ArH); $\delta_{\rm C}$ 33.8 (2C, 2×ArCH₂), 61.7 (2C, 2×CH₂OH), 125.7, 127.3, 128.0, 129.0, 138.0, 139.5 (12C, ArC); *m*/z 224 (M⁺–18, 5%), 207 (16), 206 (64), 205 (71), 195 (21), 194 (91), 193 (95), 191 (34), 189 (17), 180 (15), 179 (89), 178 (93), 165 (30), 152 (12), 128 (10), 119 (16), 117 (16), 116 (33), 115 (44), 105 (100), 104 (91), 103 (34), 95 (36), 91 (63), 89 (46), 82 (28), 79 (15), 78 (39), 77 (33), 76 (13), 65 (27), 63 (22), 51 (25), 44 (11); HRMS: M⁺–[H₂O], found 224.1216. C₁₆H₁₆O requires 224.1201.

4.4.3. 2-{2-[2-(2-Hydroxyethyl)phenethyl]phenyl}-1-ethanol (5b). $R_{\rm f}$ 0.30 (hexane/ethyl acetate: 3/2); mp 98– 99°C (ethyl acetate/hexane); ν (KBr) 3485–3083 (OH), 3060, 3017, 1490, 1448 (C=CH), 1047, 1020 cm⁻¹ (C– O); $\delta_{\rm H}$ 2.02 (2H, br s, 2×OH), 2.93 (4H, s, 2×ArCH₂), 2.94 (4H, t, *J*=7.3 Hz, 2×CH₂CH₂OH), 3.83 (4H, t, *J*=7.3 Hz, 2×CH₂OH), 7.18–7.25 (8H, m, ArH); $\delta_{\rm C}$ 35.0, 35.9 (4C, 4×ArCH₂), 63.5 (2C, 2×CH₂OH), 126.4, 126.7, 129.7, 129.9, 135.9, 140.2 (12C, ArC); *m/z* 252 (M⁺–18, 2%), 234 (12), 219 (12), 135 (23), 133 (15), 130 (10), 129 (10), 119 (14), 118 (24), 117 (100), 116 (24), 115 (26), 106 (12), 105 (33), 104 (26), 103 (10), 93 (10), 91 (30), 78 (10), 77 (16), 75 (28), 43 (14); HRMS: $M^+-[H_2O]$, found 252.1513. $C_{18}H_{20}O$ requires 252.1514.

4.4.4. 4-[4-(2-Hydroxyphenyl)butyl]phenol (5c). $R_{\rm f}$ 0.34 (hexane/ethyl acetate: 3/2); mp 119–120°C (ethyl acetate/hexane); ν (KBr) 3588–3010 (OH), 1608, 1590, 1454 (C=CH), 1255, 1239 cm⁻¹ (C–O); $\delta_{\rm H}$ 1.69 (4H, m, 2×ArCH₂CH₂), 2.67 (4H, m, 2×ArCH₂), 4.92 (2H, br s, 2×OH), 6.76 (2H, td, *J*=7.3, 1.2 Hz, ArH), 7.04–7.13 (4H, m, ArH); $\delta_{\rm C}$ 29.4, 31.4 (4C, 2×CH₂CH₂Ar), 115.3, 120.9, 127.1, 128.4, 130.3, 153.4 (12C, ArC); *m/z* 242 (M⁺, 21%), 120 (16), 108 (15), 107 (100), 91 (11), 79 (12), 77 (33); HRMS: M⁺, found 242.1310. C₁₆H₁₈O₂ requires 242.1307.

4.4.5. 1,1,6,6-Tetraethoxyhexane (**5d**). $R_{\rm f}$ 0.44 (hexane/ ethyl acetate: 9/1); ν (film) 1120, 1061 cm⁻¹ (C–O); $\delta_{\rm H}$ 1.17 (12H, t, *J*=7.0 Hz, 4×CH₃), 1.36, 1.60 (4H and 4H, 2m, (CH₂)₄), 3.45, 3.59 (4H and 4H, 2m, 4×CH₂CH₃), 4.44 (2H, t, *J*=5.0 Hz, 2×CH); $\delta_{\rm C}$ 12.3 (4C, 4×CH₃), 24.6, 33.5 (4C, (CH₂)₄), 60.8 (4C, 4×CH₂CH₃), 102.8 (2C, 2×CH); m/*z* 216 (M⁺ - 46, 1%), 128 (21), 127 (38), 103 (89), 99 (10), 98 (47), 97 (12), 95 (13), 85 (22), 81 (49), 79 (12), 75 (54), 70 (22), 69 (14), 67 (40), 59 (26), 57 (66), 55 (14), 47 (100), 46 (18), 45 (56), 44 (17), 43 (41), 42 (12), 41 (51), 40 (19); HRMS: M⁺ - [OCH₂CH₃], found 217.1880. C₁₂H₂₅O₃ requires 217.1882.

4.4.6. 1,8-Octanediol (5e).²¹ $R_{\rm f}$ 0.21 (hexane/ethyl acetate: 3/2); ν (film) 3399, 3187 (OH), 1293, 1049 cm⁻¹ (C–O); $\delta_{\rm H}$ 1.31, 1.53 (6H and 8H, 2m, 6×CH₂ and 2×OH), 3.62 (4H, m, 2×CH₂OH); $\delta_{\rm C}$ 25.6, 29.3, 32.7 (6C, 6×CH₂), 62.8 (2C, 2×CH₂OH); m/z 110 (M⁺-36, 0.5%), 82 (27), 81 (17), 70 (11), 69 (18), 68 (38), 67 (65), 57 (27), 56 (25), 55 (70), 54 (38), 44 (17), 43 (38), 42 (33), 41 (100).

Acknowledgements

The work was financially supported by the D.G.E.S. (no. PB97-0133) from the Spanish Ministerio de Educación y Cultura (M.E.C.) and Generalitat Valenciana (no. GVDOC99-2-4). I. M. P. thanks the Generalitat Valenciana for a fellowship.

References

- Reviews: (a) Nájera, C.; Yus, M. Trends Org. Chem. 1991, 2, 155–181. (b) Nájera, C.; Yus, M. Recent Devel. Org. Chem. 1997, 1, 67–96. (c) Yus, M.; Foubelo, F. Rev. Heteroatom Chem. 1997, 17, 73–107.
- 2. Previous paper on this topic from our laboratory: Alonso, F.;

Falvello, L. R.; Fanwick, P. E.; Lorenzo, E.; Yus, M. *Synthesis* **2000**, 949–952.

- 3. Previous paper on this topic from our laboratory: Foubelo, F.; Yus, M. *Tetrahedron Lett.* **2000**, *41*, 5047–5051.
- Previous paper on this topic from our laboratory: Falvello, L. R.; Foubelo, F.; Soler, T.; Yus, M. *Tetrahedron: Asymmetry* 2000, 11, 2063–2066.
- Reviews: (a) Yus, M. Chem. Soc. Rev. 1996, 155–161. (b) Ramón, D. J.; Yus, M. Eur. J. Org. Chem. 2000, 225–237 (Microreview).
- 6. For a polymer supported version of the process, see:
 (a) Gómez, C.; Ruiz, S.; Yus, M. *Tetrahedron Lett.* 1998, 39, 1397–1400. (b) Gómez, C.; Ruiz, S.; Yus, M. *Tetrahedron* 1998, 55, 7017–7026.
- 7. Wakefield, B. J. Organolithium Methods, Academic: London, 1988.
- Organocopper Reagents, Taylor, R. J. K., Ed.; Oxford University: Oxford, 1994.
- Preliminary communication: Pastor, I. M.; Yus, M. Tetrahedron Lett. 2000, 41, 1589–1592.
- 10. Almena, J.; Foubelo, F.; Yus, M. Tetrahedron 1995, 51, 3351–3364.
- See, for instance: (a) Babuchi, F.; Fiandanese, V.; Marchese, G.; Punzi, A. *Tetrahedron Lett.* **1995**, *36*, 7305–7308.
 (b) Babuchi, F.; Fiandanese, V.; Marchese, G.; Punzi, A. *Tetrahedron* **1999**, *55*, 2431–2440.
- 12. Almena, J.; Foubelo, F.; Yus, M. Tetrahedron 1995, 51, 3365–3374.
- 13. Bachki, A.; Foubelo, F.; Yus, M. Tetrahedron Lett. 1998, 39, 7759–7762.
- 14. (a) Barluenga, J.; Rubiera, C.; Fernández, J. R.; Yus, M. J. Chem. Soc., Chem. Commun. 1987, 425–426.
 (b) Barluenga, J.; Rubiera, C.; Fernández, J. R.; Yus, M. J. Chem. Soc., Perkin Trans. 1 1988, 3113–3117.
- See, for instance: (a) Posner, G. H. Org. React. 1975, 22, 253–400. (b) Lipshutz, B. H.; Sengupta, S. Org. React. 1992, 41, 135–631.
- Barluenga, J.; Fernández, J. R.; Flórez, J.; Yus, M. Synthesis 1983, 736–739.
- See, for instance: (a) Ito, Y.; Konoike, T.; Saegusa, T. J. Am. Chem. Soc. 1975, 97, 2912–2914. (b) Ito, Y.; Konoike, T.; Harada, T.; Saegusa, T. J. Am. Chem. Soc. 1977, 99, 1487– 1493.
- Ramón, D. J.; Yus, M. Tetrahedron: Asymmetry 1997, 8, 2479–2496.
- In the case of intermediates 1a-c the excess of lithium powder was filtered off before reacting with the mixture of the copper(I) salt and the electrophilic olefin.
- Larcheveque, M.; Valette, G.; Cuvigny, Th. *Tetrahedron Lett.* 1979, *35*, 1745–1749.
- 21. Aldrich Handbook of Fine Chemicals and Laboratory Equipment, 2000–2001.